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Constitutive model for PMMA
at high pressure

Ralph Menikoff∗
Los Alamos National Laboratory
Los Alamos, New Mexico 87545

(Dated: March 15, 2004)

A constitutive model of PMMA is developed for use in analyzing VISAR experiments that utilize
PMMA as a window material. A thermodynamically consistent, fully three dimensional rate depen-
dent elastic-plastic model is calibrated to data for (i) shock speed, (ii) release wave speed behind
shock, (iii) shear stress behind shock, (iv) shear wave speed from static compression and (v) shock
wave profiles. The model is intended for the regime of shock experiments; microsecond time scale
and stress up to 10GPa.

PACS numbers: 62.20.Fe, 62.50.+p, 64.30.+t
Keywords: PMMA, shock wave profiles, EOS

I. INTRODUCTION

PMMA1 remains transparent under shock compres-
sion, and is used as a window material for VISAR2 ex-
periments. These experiments measure a velocity time
history at the sample/window interface during the pas-
sage of a high pressure compression wave, often referred
to as shock wave, even though strictly speaking, a shock
is a discontinuity. In order to infer the response of the
sample (i.e., wave profile) from the VISAR record, the
response of the window material is needed to account for
the impedance mismatch of a wave at the sample/window
interface.

Many experiments have been performed to character-
ize the material response of PMMA. These include the
following:

1. Ultrasonic measurements of the longitudinal and
transverse acoustic speeds under static compression
up to 1GPa [2, 3].

2. Measurements of the principal shock Hugoniot [4–
6]. These experiments determined the shock pres-
sure as a function of compression, and measured
wave profiles after various lengths of propagation.
In addition, the release wave speed, which corre-
sponds to the longitudinal sound speed behind the
shock front, was measured.

3. Shear stress behind the shock wave [7–12]. Gupta
[7] used an oblique impact to generate a shear wave

∗Electronic address: rtm@lanl.gov
1 Polymethyl methacrylate, also known under the trade names

plexiglass and lucite. The properties of a polymer vary some-
what with the manufacturing process. The shock experiments of
most interest in this paper used Rohm and Haas type II UVA
plexiglass.

2 Velocity Interferometry System for Any Reflector, for a review
of the technique see [1].

and measured its wave speed. The other experi-
ments used piezoresistive foil gauges (either Man-
ganin, ytterbium or carbon) to measure the shear
stress behind a longitudinal wave. It is important
to note that the data from early experiments, such
as [8], are incorrect because the response of the
piezoresistive element to its anisotropic surround-
ings and therefore its calibration in the shear mode
were not understood at the time the experiments
were performed. Results from the most recent ex-
periments [10, 12] are consistent.

4. Thermal properties such as the temperature depen-
dence of the shear modulus [13] and specific heat
[14] at atmospheric pressure, and the temperature
as a function of pressure along isentropes [15, 16]
and the principal shock Hugoniot [17]. We note
that at atmospheric pressure the glass transition
temperature is 378K. At the glass transition, the
specific heat increases by 20 % and the static shear
modulus decreases by three orders of magnitude.
The stress dependence of the glass transition tem-
perature has not been measured.

The shock wave profiles show a strong relaxation re-
sponse. Since PMMA is a polymer, viscoelastic models
have been used to describe its response, see for exam-
ple [6, Sec. 3]. However, viscoelastic models typically are
applicable at lower pressures and longer time scales than
occurs in shock wave experiments. Moreover, PMMA ex-
hibits a yield behavior that depends on pressure, temper-
ature and strain rate [18, 19]. Elastic-plastic models have
also been used [20]. These models include strain rate,
thermal softening and strain hardening effects but do not
include compressible effects needed for shock waves.

Yet the PMMA wave profiles can be viewed as dis-
playing the qualitative features associated with a rate
dependent elastic-plastic model. These include a partly
dispersed wave profile (discontinuous shock followed by
relaxation layer) and transient wave profile approaching
steady state with increasing distance of run. A distinc-
tive aspect of elastic-plastic waves that is not displayed
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by PMMA is a two-wave structure; elastic-precursor fol-
lowed by plastic wave. However, the Hugoniot locus
in the (particle-velocity,shock-velocity)–plane displays a
rapid change in slope around 0.7 GPa. Rosenberg & Par-
tom [21] associated this with the Hugoniot elastic limit,
and proposed a pressure dependent yield strength to rec-
oncile difference with static strength. A similar idea is
used here. By choosing a yield strength to increase with
compression, no split waves occur and the wave profiles
are always partly dispersed.

The aim of this paper is to construct a thermodynam-
ically consistent rate dependent elastic-plastic model for
PMMA that can account for the tensorial nature of the
stress (three-dimensional model), for the non-linearities
in the shear strain, and for the relaxation in shock wave
profiles. The non-linearities are important because the
elastic shear strain behind the discontinuity in a partly
dispersed wave is large enough to be outside the linear
regime. We also note that rate-dependent plasticity re-
duces to a viscoelastic model in the limit of slow strain
rates. The emphasis here is on the large strain rates
(∼ 106 per second) that occur in shock profiles.

The remainder of this paper is organized as follows.
Section 2 describes the hyper-elastic model that is used.
Shock experiments correspond to uniaxial strain. Uniax-
ial strain greatly simplifies the model. The reduction to
the 1-dimensional model is presented in section 3. Ex-
perimental data and calibration of the model for PMMA
is described in section 4. We note that the yield strength
and the shear modulus determine the plastic strain on
the yield surface. To calibrate the model it is more con-
venient to fit the plastic strain to the acoustic speed on
the Hugoniot locus, and then use the yield strength, i.e.,
shear stress, as a consistency check. Wave profiles and
the plastic relaxation are presented in section 5.

II. HYPER-ELASTIC MODEL

A hyper-elastic model is defined by the specific energy.
We consider an isotropic material and assume that the
energy is the sum of hydrostatic and shear components
of the form

E(C,Cp, S) = Ehydro(V, S) + Eshear(V, I1, I2) ,

where V is specific volume, C = FT F is the right Cauchy-
Green tensor, F is the deformation gradient, Cp is the
plastic analog of C, S is the entropy, Ij are the invariants
of bel = J−2/3 Cp

−1C, and J = V/V0. The invariants are

I1 = Tr (bel) ,

I2 = 1
2

(
I2
1 − Tr

(
bel

2
) )

,

and assuming detCp = 1, I3 = 1. In effect, Cp plays the
role of a metric, and 1

2 (bel−I) is used as a measure of the
elastic shear strain since bel is scaled to be independent
of hydrostatic compression.

For simplicity, we further assume that the shear energy
has the form

Eshear = 1
2 V G(V )

[
Tr (bel)− 3

]
,

where G(V ) is shown below to correspond to the hydro-
static shear modulus. The Cauchy stress splits naturally
into hydrostatic and deviatoric components

σ = 2 J−1 F
∂E
∂C

FT

= −P I + 2 G(V ) dev (bel) ,

where the pressure is

P = Phydro(V, S) + Pshear(V,bel) ,

with hydrostatic and shear components

Phydro = −
( ∂

∂V
Ehydro

)
S

,

Pshear = − 1
2

d

dV

(
V G

)[
Tr (bel)− 3

]
.

To compare with data we need the acoustic speeds,
both longitudinal and transverse. These are determined
by the acoustic tensor. For a wave propagating in the
n̂-direction the wave speeds, actually ρ c2, are the eigen-
values of the matrix a(n̂) with components

a(n̂)ij = A1 ninj + A2

(
ni[dev (bel) n̂]j + nj [dev (bel) n̂]i

)
+ A3 δij ,

where

A1 = ρ c2
hydro + 1

9 Tr (bel) G

+ J
[
Tr (bel)− 3

] [
V

d

dV
G + 1

2V 2
( d2

dV 2

)
G

]
,

A2 = 1
3 G + V

d

dV
G ,

A3 = (n̂, bel n̂)G ,

c2
hydro = −V 2

( ∂

∂V
Phydro

)
S

.

For hydrostatic compression, (bel)ij = δij , and the acous-
tic speeds are

ρ c2
long = ρ c2

hydro + 4
3 G(V ) ,

ρ c2
tran = G(V ) .

Thus, G(V ) corresponds to the hydrostatic shear modu-
lus.

The model described is thermodynamically consistent
and fully three dimensional. The main limitations of the
model are the neglect of the temperature dependence of
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the shear modulus and the assumption that detCp = 1.
The model can be extended to include thermal effects
[22]. The limited data available on the temperature de-
pendence of the shear modulus is from acoustic mea-
surements; up to 75C at 6 Mhz [2, fig. 5] and up to
200 C at 1 Hz [13, figs. 8 and 12], both at atmospheric
pressure. We note that the sound speed is frequency
dependent. The modulus from the ultrasonic measure-
ments is significantly higher than from the low frequency
measurements and quasi-static torsion experiments [18].
However, the ultrasonic modulus is approximately the
same as obtained from the shear wave experiments, see
[7, fig. 8], which have similarly high strain rates. Both
the high and low strain rate experiments show that the
shear modulus decreases with temperature. In addition,
the low strain strain experiments show that the shear
modulus decreases by three orders of magnitude above
the glass transition temperature, 378 K (105 C). It is not
known whether the high strain rate modulus displays
such a dramatic change. Here our focus is on the mi-
crosecond time scale and the glass transition is neglected,
i.e., we assume PMMA remains an amorphous solid.

The assumption on Cp is motivated by metals for which
plasticity is due to the motion of dislocations in a crys-
tal. A variation in plastic volume can be associated with
a change in porosity, and has been used to describe soils
and granular materials. For a polymer the space between
molecules (regions of low electron density), often referred
to as ‘free volume’, enters into a model in the same man-
ner as porosity, see e.g., [23]. A decrease in molecular
porosity can be associated with an irreversible material
change such as a decrease in the polymer chain length
or breaking cross links between chains. Modeling this
irreversibility is likely to be needed to fit accurately the
profile of a release wave behind a shock.

III. UNIAXIAL FLOW EQUATIONS

The flow in shock wave experiments corresponds to
uniaxial strain. To compare with shock data, we reduce
to a one-dimensional model for uniaxial flow. The defor-
mation gradient for uniaxial strain is

F = diag[ V/V0, 1, 1 ]

=
( V

V0

)1/3

diag[ exp( 2
3ε), exp(− 1

3ε), exp(− 1
3ε) ] ,

where ε = log(V/V0) characterizes the total shear strain.
The elastic and plastic right Cauchy-Green tensors have
the form

C = diag[ exp(2ε ), 1, 1 ] ,

Cp = exp
(
− 2

3 εpl

)
diag[ exp(2εpl), 1, 1 ] ,

where εpl is a scalar plastic strain variable. The elastic
strain tensor is then

bel = J−2/3 Cp
−1C

= diag[ exp( 4
3εel), exp(− 2

3εel), exp(− 2
3εel) ] ,

where J = V/V0 = exp(ε), and

εel(V, εpl) = ε(V )− εpl = log(V/V0)− εpl

is a scalar elastic shear strain variable.
The 1-D elastic-plastic flow equations are

∂

∂t

(
ρ
)

+
∂

∂x

(
ρu

)
= 0

∂

∂t

(
ρu

)
+

∂

∂x

(
ρu2 − σxx

)
= 0

∂

∂t

(
ρ E

)
+

∂

∂x

(
ρE u− σxxu

)
= 0

∂

∂t

(
ρ εpl

)
+

∂

∂x

(
ρ u εpl

)
= ρ Rpl

(1)

where E = 1
2u2 + E is the total specific energy, and Rpl

is the plastic strain rate. These equations model the
conservation laws of mass, momentum and energy with
an additional evolutionary equation for the plastic strain
variable.

We assume that the energy has the form

E(V, εpl, S) = Ehydro(V, S) + Eshear

(
V, εel(V, εpl)

)
. (2)

Then the longitudinal stress can be expressed as

σxx = −(Phydro + Pshear + Pdev) , (3)

where the stress components are

Phydro = −∂Ehydro

∂V
,

Pshear = −∂Eshear

∂V
,

Pdev = − 1
V

∂Eshear

∂εel
.

(4)

The elastic thermodynamic identity reduces to

dE = σxx dV + Pdev dεpl + T dS .

Hence in 1-D the elastic-plastic equations are the analog
of the fluid equations with the fluid pressure replaced by
the longitudinal stress plus an internal degree of freedom
for the plastic strain which evolves with a rate equation.
From the thermodynamic identity for the hydrodynamic
component of the energy,

dEhydro = −Phydro dV + T dS ,

the hydro component of the pressure can be expressed in
terms of energy rather than the entropy,

Phydro(V, εel, E) = Phydro

(
V, E − Eshear(V, εel)

)
.

This simplification is possible only when Eshear is inde-
pendent of T , i.e., the temperature dependence of the
shear modulus is neglected.
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A. Reduced Constitutive Model

The shear energy for the model in the previous section
reduces to

Eshear(V, εel) = 1
2 V G(V )

[
exp( 4

3εel)+2 exp(− 2
3εel)−3

]
.

The components of the stress are then

Pshear(V, εel) = − 1
2

d

dV

[
V G(V )

]
[
exp( 4

3εel) + 2 exp(− 2
3εel)− 3

]
,

Pdev(V, εel) = − 2
3 G(V )

[
exp( 4

3εel)− exp(− 2
3εel)

]
.

Note that the stress and strain variables (σxx, εel and
εpl) are positive in tension, while the pressure variables
(Phydro, Pshear, Pdev) are positive in compression. From
the acoustic tensor, it can be shown that the longitudinal
and transverse acoustic speeds are given by

ρ c2
long = V

( ∂

∂V
σxx

)
εpl,S

= ρ c2
hydro + 4

3ρ c2
tran

+ 2
9

[
exp( 4

3εel)− exp(− 2
3εel)

]
G

+
[
7
3 exp( 4

3εel) + 2
3 exp(− 2

3εel)− 3
]
V

d

dV
G

+ 1
2

[
exp( 4

3εel) + 2 exp(− 2
3εel)− 3

]
V 2 d2

dV 2
G ,

(5)

ρ c2
tran = G(V ) exp( 4

3εel) . (6)

In the limit of small elastic shear strain, to leading
order,

Eshear = 2
3 V G(V ) ε2el ,

Pshear = − 2
3

d

dV

[
V G(V )

]
ε2el ,

Pdev = − 4
3 G(V ) εel ,

ρ c2
long = ρ c2

hydro + 4
3ρ c2

tran + 4
9 G(V ) εel + 8

3

d G

dV
εel ,

ρ c2
tran = G(V ) (1 + 4

3εel) .

We note that Eshear and Pshear are second order, while
Pdev is proportional to the shear strain. The standard
shear stress model is linear and corresponds to neglecting
second order terms. However, we include the non-linear
terms because the elastic shear strain may not be small
in a shock profile. With the power of computers today,
there is no need to employ the simplified linear shear
stress model in numerical simulations.

B. Mie-Grüneisen Form

To fit the data for PMMA, it is convenient to use a
Mie-Grüneisen form for the stress

σxx(V, e, εpl) =σxx
h (V )− Γ

V

[
e− eh(V )

]
−

( ∂

∂εel
σxx

)
V,e

[
εpl − εY (V )

]
,

(7)

where Γ is the Grüneisen coefficient, σxx
h , eh = e0 +

1
2 (σxx

h −σxx
0 ) (V −V0) and εY are the longitudinal stress,

energy and plastic strain, respectively, on the principal
Hugoniot locus.

For the model we are using( ∂

∂εel
σxx

)
V,e

= − ∂

∂εel

(
Pshear + Pdev

)
V

= 4
3ρ c2

tran + 2
3

[
exp( 4

3εel)− exp(− 2
3εel)

]
[

1
3G + V

d

dV
G

]
, (8)

(ρ clong)2 =
( ∂

∂V
σxx

)
e,εpl

+
(
σxx ∂

∂e
σxx

)
V,εpl

=
d

dV
σxx

h − 1
2

Γ
V

(
V0 − V

)[ d

dV
σxx

h − (ρ0 us)2
]

+ 2
3

{
2 ρ c2

tran +
[
exp( 4

3εel)− exp(− 2
3εel)

]
[
1
3G + V

d

dV
G

]} d

dV
εY ,

(9)

ρ c2
tran = exp( 4

3εel) G(V ) , (10)

where us is the shock speed, and is determined by
(ρ0 us)2 = ∆(σxx)/∆(V ).

The Grüneisen coefficient can be determined from tem-
perature measurements along an isentrope using the ther-
modynamic relation

∂T

∂P

∣∣∣
S

=
T Γ
Ks

,

where Ks is the isentropic bulk modulus. For hydro-
static compression, Rodriquez and Filisko [15] measured
the temperature along several isentropes (by varying the
initial temperature at atmospheric pressure) up to a
pressure of 0.2 GPa. Though Ks was not measured, in
that range the variation should be relatively small. Yet
∆T/∆P varies with temperature by a factor of over 2 [15,
fig. 5]. For uniaxial compression, starting at atmospheric
pressure and room temperature, Rosenberg & Partom
[16] measured the temperature up to 1.6GPa. From their
measurements they obtained Γ/V = 0.765±0.015. How-
ever, based on Rodriquez and Filisko data, in general Γ
depends on both V and T .
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Our focus is on the principal shock Hugoniot for which
the entropy increases with pressure, and up to a higher
pressure (10GPa) than the measurements from which Γ
can be inferred. We assume along the Hugoniot that the
Grüneisen coefficient can be expressed in terms of the
compression as

Γ(η) = Γ0 + Γ1η + Γ2η
2 ,

where η = 1− V/V0. Since weak shocks are nearly isen-
tropic, we take Γ0 = −Γ1 in order that Γ/V is constant
for small compression, η � 1, and treat Γ2 as a fitting pa-
rameter. For the value of Γ0 we use the thermodynamic
relation

Γ/V = βKs/Cp ,

where β is coefficient of volumetric expansion, the bulk
modulus is determined from the acoustic speeds Ks =
ρ (c2

long− 4
3c2

tran) and Cp is specific heat at constant pres-
sure. At the initial state, ρ = 1.185 g/cm3, the co-
efficient of linear expansion3 is β/3 = 63 × 10−6/K,
Cp = 1.38 × 10−3 MJ (kg K)−1, clong = 2.75 km/s and
ctran = 1.4 km/s. This yields Γ0 = 0.7 which is slightly
larger than the value obtained by Rosenberg & Partom.

By subtracting the shear stress and shear energy com-
ponents, the principal Hugoniot locus determines a refer-
ence curve for the hydrostatic component of the equation
of state. Along the hydrostatic reference curve the tem-
perature is determined by integrating the ODE

d

dV
Tref(V ) +

Γ
V

Tref(V ) =
[
Pref(V ) +

d

dV
eref(V )

]
C−1

v ,

where Cv is the specific heat at constant V . It is ther-
modynamically consistent with Γ a function of only V to
take the specific heat to be a constant. For a constant
specific heat, the temperature is given by

T (V, εel, E) = Tref(V ) +
[
E − Eshear(V, εel)− eref(V )

]
/Cv .

Due to the excitation of molecular vibrations, the specific
heat at constant pressure increases from 1.39 J/(g K) at
300 K to 2.44 J/(gK) at 550 K [14, table 4]. Here we use
the value at the glass transition temperature 378 K, Cp =
1.7 J/(g K) which will overestimate the temperature on
the Hugoniot at high pressure. This corresponds to Cv =

Cp

1+β T Γ = 1.64 × 10−3 MJ (kg K)−1. In general the V

and T dependence of the specific heat and the Grüneisen
coefficient are related. Accounting for the temperature
dependence more accurately is beyond the scope of this
paper.

3 From http://www.dow.com/styron/design/guide/thermal.htm

C. Plastic Strain Rate

We assume that the plastic strain rate has the form

Rpl(V, εel) = 1
2

max(Ỹ − Y, 0)
µ

sgn(εel) ,

where Ỹ(dev σ) is the yield function, Y is the yield
strength and µ is a parameter with dimensions of vis-
cosity (pressure×time) that controls the relaxation rate
of the shear stress to the yield surface. For an isotropic
material, such as a polymer, it is reasonable to use the
Von Mises yield function, Ỹ =

√
3/2 ‖dev σ‖. For uniax-

ial flow, the Von Mises yield function reduces to

Ỹ(V, εel) = 3
2 |Pdev| = G(V ) |exp(2εel)− 1| exp(− 2

3εel) .

We further assume that the yield strength is a func-
tion of V . Based on the available data for PMMA, it
is convenient to specify the plastic strain on the yield
surface, εpl = εY (V ), and define the yield strength by,
Y (V ) = Ỹ(V, log(V/V0)− εY (V )).

We note that in the limit of slow strain rates,
|(d/dt)ε| = |∇ · ~u| � Y/µ, the plastic flow regime re-
duces to rate-independent plasticity with an additional
viscous stress

σvis = µ
[
∇⊗ ~u + (∇⊗ ~u)†

]
.

Moreover, with Y = 0, the elastic-plastic model reduces
to a visco-elastic model.

With the yield strength defined in terms of εY , the
plastic strain rate can be re-expressed as

Rpl(V, εel) =
max(|εpl − εY | , 0)

τ
sgn(εel) ,

where τ is a relaxation time constant. To fit wave profiles,
the relaxation time constant needs to decrease with the
distance from yield surface. We assume that τ can be fit
with the form

τ = τ0(V )
(
1 +

[ |εpl − εY |
ε0

]n)−1

, (11)

where ε0 and n are parameters, and τ0(V ) is the time
constant at the yield surface.

We note that the time constant and the viscous pa-
rameter are related by

τ0(V ) = 4
3

µ0(V )
− ∂

∂εel
Pdev

.

In the limit of small elastic strain, τ0(V ) = µ0(V )
G(V ) . More-

over, the dependence of τ on εpl − εY is analogous in a
visco-elastic model to µ depending on (d/dt)ε since the
distance from the yield surface increases with strain rate.

Substituting Eq. (11) into the plastic strain rate equa-
tion yields

d

dt
εpl = −

(εpl − εY )
(
1 + [(εpl − εY )/ε0]n

)
τ0(V )

, (12)
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for εY (V ) ≤ εpl ≤ 0 . Many hyperbolic PDE solvers ac-
count for source terms with an operator split algorithm.
Holding V fixed the solution to Eq. (12) is

εpl(t + ∆t) = εY +

[εpl(t)− εY ] exp(−∆t/τ0){
1 +

[ εpl(t)−εY

ε0

]n[
1− exp(−n∆t/τ0)

]}1/n
. (13)

Consequently, the source term for the plastic strain can
be accounted for efficiently.

IV. FITTING PARAMETERS

Experimental data for PMMA are used to calibrate pa-
rameters in a Mie-Grüneisen equation of state. The data
are parameterized by the compression ratio η = 1−V/V0.
Measurements of the shock Hugoniot, fit by Schuler &
Nunziato [6], determine σxx

h . Schuler & Nunziato also
measured and fit the release wave speed which deter-
mines the longitudinal sound speed behind the shock.
Static measurements of the transverse sound speed up to
to 1 GPa [3] were used to constrain the fit of the shear
modulus.

Given σxx
h and clong from experiments and assuming

that G(V ) and Γ(V ) are known, Eq. (9) determines
(d/dV )εY , which can be integrated to determine the plas-
tic strain on the yield surface as a function of V . This in
turn determines the shear stress behind the shock front.
Measurements of the shear stress [12] were used to con-
strain the shear modulus at stresses above the static mea-
surements and the quadratic coefficient of Γ. The param-
eters were varied to obtain a reasonable fit. The values
of the parameters are listed in tables 1-4.

Data and fits for the shock velocity and acoustic speeds
along the Hugoniot locus are shown in figure 1. The fit
to the shear stress is shown in figure 2. The total, elas-
tic and plastic strains are shown in figure 3. By taking
the yield strength to be a function of V , the shock veloc-
ity is monotonically increasing with stress and an elastic
precursor does not occur. We note that the equilibrium
elastic shear strain is about a factor of ten larger than is
typical for metals. The bulk and shear moduli are shown
in figure 4. The difference between the hydrostatic and
uniaxial bulk modulus is dominated by the (d/dV )G term
in Eq. (5).

The change in slopes of shock velocity in figure 1, of
shear stress in figure 2, of elastic strain in figure 3 and of
the hydrostatic bulk modulus in figure 4, all correspond
to the same compression. Very likely shock compres-
sion causes bonds in the polymer chain to break, and the
chains to pack together more closely. This is compati-
ble with a decrease in porosity lowering the rate of in-
crease of the hydrostatic sound speed with compression.
Model possibly could use the plastic volume to account
for such an irreversible change. One would expect the

TABLE I: Fit to stress on principal Hugoniot [6, Eq. (3.8)
and footnote 5], parameterized by η = 1− V/V0.

σxx
h (η) = η

∑
aiη

i

a0 8.979 GPa

a1 70.0

a2 -586.9

a3 1965.2

TABLE II: Fit to Lagrangian longitudinal sound speed on
principal Hugoniot [6, Eq. (3.9) and footnote 6], parameter-
ized by η = 1− V/V0.

ρ0 [ρ clong(η)/ρ0]
2 =

∑
biη

i

b0 9.031 GPa

b1 141.4

b2 -677.9

b3 4160.0

TABLE III: Hydrostatic shear modulus fit to transverse sound
speed data [3], parameterized by η = 1− V/V0.

G(η) =
∑

Giη
i

G0 2.31 GPa

G1 15.

G2 80.

TABLE IV: Grüneisen coefficient parameterized by η = 1 −
V/V0.

Γ(η) =
∑

Γiη
i

Γ0 0.7

Γ1 -0.7

Γ2 8.

TABLE V: Plastic strain rate parameters.

τ0 0.2 µs

ε0 0.025

n 4

release wave profile to be affected by a change in plastic
volume.

The equation of state determines the Hugoniot loci.
Two loci are of importance. The frozen locus holds the
plastic strain fixed while for the equilibrium locus the
plastic strain is determined by the yield surface. Both
loci are shown in figure 5 for the principal Hugoniot. It



7

FIG. 1: Wave speeds as a function of compression. Red and black curves correspond to shock speed and Lagrangian longitudinal
sound speed behind shock, respectively. Red, blue and black triangles are the data from Barker & Hollenbach [5], Schuler &
Nunziato [6] and Schuler [4], respectively. The dashed black curve is the Lagrangian transverse sound speed, and the plus
symbols are the static data of Stephens, Heard & Schock [3].

follows from these loci that the wave profile for any shock
wave is partly dispersed; a frozen shock followed by a re-
laxation layer to point on the equilibrium locus with the
same shock velocity. In particular, a result of the yield
strength increasing with compression is that the equilib-
rium shock velocity is strictly monotonically increasing,
and consequently an elastic precursor does not occur.

The estimated shock temperature is shown in figure 6.
At high pressures the shock temperature is considerably
higher than the glass transition temperature at atmo-
spheric pressure, 378 K. Whether a shock causes melt-
ing depends on how much the transition temperature
increases with pressure and on the time scale for the
transition. The measured shear stress shown in figure 2
indicates that up to at least 4 GPa the shear modulus
has not changed dramatically, hence, melting has not oc-
cured. Furthermore, the change in slope of the shear
stress occurs below 2GPa and the temperature is below
the glass transition temperature at atmospheric pressure.
The same is true for the slope change of shock veloc-
ity shown in figure 1. Thus the change in slope of the
Hugoniot is not due to melting. Instead the Hugoniot

is affected by the change in the elastic strain shown in
figure 3, i.e., plastic yield phenomena.

V. WAVE PROFILES

Measurements of shock wave profiles by Barker & Hol-
lenbach [5] and Schuler & Nunziato [6] are used to cali-
brate the plastic strain rate for PMMA. Strain rate pa-
rameters are adjusted until simulated VISAR data com-
pares favorably with the experimental records; in par-
ticular, figure 3 of [6]. Admittedly this is a crude ap-
proach. But electronic data files for the wave profiles
are not available since the experiments were performed
in the 1970s before the advent of PCs and the Inter-
net. Unfortunately, there is still no mechanism within
the high pressure research community for obtaining data
electronically.

Simulations of piston driven waves were performed us-
ing an adaptive mesh Lagrangian algorithm (second or-
der Godunov scheme) within the Amrita environment of
James Quirk [24–26]. The rate parameters used are listed
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FIG. 2: Shear stress as a function of longitudinal stress on
Hugoniot locus. Y = 3

2
‖dev σ‖ = σxx − σyy. Red curve is

from model and symbols are data from Millett & Bourne [12].

FIG. 3: Strain as a function of longitudinal stress on Hugoniot
locus. Black, blue and red curves correspond to total strain,
ε = log(ρ/ρ0), elastic strain, εel = ε − εpl, plastic strain, εpl,
respectively.

in table V. The results for three case are shown in fig-
ure 7. The simulated VISAR records are the particle
velocity along a Lagrangian particle path for a sequence
of positions, and the wave profiles are of the elastic shear
strain at a sequence of times.

The three cases are distinguished by the shock
strength. Their salient features are as follows:

1. Weak shock; piston velocity 0.08 km/s and longitu-
dinal stress 0.28 GPa
The VISAR profiles are dominated by the frozen
shock with a small particle velocity change in the
relaxation layer. The elastic shear strain varies
monotonically.

FIG. 4: Moduli vs. compression. Black and red curves are
the bulk and shear moduli, respectively, based on the acous-
tic speeds; K = ρ (c2

long − 4
3
c2
tran) and G = ρ c2

tran. The
solid and dashed curves represent hydrostatic and uniaxial
shock compression, respectively. The acoustic speeds along
the shock Hugoniot are given by Eqs. (9) and (10) with
εel = log(V/V0)− εY (V ), and the hydrostatic acoustic speeds
from Eqs. (5) and (6) with εel = 0.

FIG. 5: Shock Hugoniot in (particle velocity, shock velocity)–
plane. Blue and red curves are frozen and equilibrium loci,
respectively.

2. Medium shock; piston velocity 0.3 km/s and longi-
tudinal stress 1.1GPa
The sequence of VISAR records clearly shows that
the particle velocity behind the frozen shock de-
creases with distance of run towards its asymptotic
value given by the frozen Hugoniot locus. There is
a larger velocity change in the relaxation layer than
for a weaker shock. The elastic shear strain over-
shoots and than relaxes to the value corresponding
to the equilibrium Hugoniot locus.

3. Strong shock; piston velocity 1.1 km/s and longitu-
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FIG. 6: Estimated shock temperature vs. longitudinal stress.
Blue and red curves are frozen and equilibrium loci, respec-
tively. Symbols are data from Rosenberg & Partom [17]. The
temperatures above 378K are high due to the use of a con-
stant specific heat.

dinal stress 5.6 GPa
The apparent particle velocity behind the frozen
shock front, both experiment [6, fig. 3b] and sim-
ulation, is substantially larger than for the frozen
Hugoniot shown in figure 5. This is a consequence
of the shear stress behind the frozen shock being far
from the yield surface resulting in a very small re-
laxation time constant. This is evident in the spike
of the elastic shear strain immediately behind the
frozen shock front. Typically VISAR experiments
have a temporal resolution of about 1 ns. On this
time scale, the discontinuity of the frozen shock is
not distinguishable from the very large slope caused
by the fast decrease in the elastic shear strain im-
mediately behind the shock front. Since the relax-
ation time constant increases as the shear stress
approaches the yield surface, only a small rollover
in the velocity profile is observed.

For the strong shock case, a few comments on the nu-

merics are in order. To calculate the spike in the elastic
shear strain efficiently, an adaptive mesh algorithm is
needed. The simulations here used an initial cell size of
50 µm, and 3 levels of refinement by a factor of 4. Hence
the effective resolution is 0.78 µm. In addition, it is im-
portant to integrate accurately the source term for the
plastic strain, Eq. (12). A form for the plastic strain rate
that lends itself to evaluating the integral exactly, such as
Eq. (13), or at least an asymptotic expression is advan-
tageous since it avoids having the time step dominated
by a stiff source term.

The stability of solutions to the fluid flow equations,
hence any numerical algorithm, is dependent on dissipa-
tion. Thermodynamic consistency is necessary in order
to base dissipation on the physical entropy. The elastic
shear strain behind a strong frozen shock is large enough
to be outside the domain of linear elasticity. Conse-
quently, to calculate a shock wave profile, it is important
for numerical stability to account adequately for the non-
linearities in the constitutive model. This is the reason
why we have taken the trouble to present the formal-
ism for a fully nonlinear thermodynamically consistent
elastic-plastic model.

The part of the model that has the weakest physical
justification is the plastic strain rate. Empirically, this
could be improved by including release wave profile data
in the calibration. Model development would be facili-
tated if there were a means to obtain electronically pro-
file data for experiments that have been reported in the
literature.

Finally, we would like to emphasis the importance of
having a constitutive model that covers a wide range.
VISAR records for shock wave profiles of a solid typically
display an elastic precursor followed by a plastic wave.
For a PMMA window, the precursor can be in the weak
to medium shock range in which the frozen Hugoniot
dominates the impedance match. In contrast, the plastic
wave can be in the strong shock range in which the equi-
librium Hugoniot dominates the impedance match. The
rate dependent elastic-plastic model covers both regions.
In effect, it allows one to interpolate between the frozen
and equilibrium response.
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